如何分析临床大数据
医院作为医疗行业的重要载体,每时每刻都在产生大量的数据,大数据已经成为医院能否快速发展的核心驱动力。近年来,随着医药卫生体制改革深入推进,国家和医疗机构对信息化建设的重视程度不断提高,投入力度不断加大,医院信息系统的数字化、智能化水平快速提升。医院数据经过长期积累,为促进医学人工智能发展、助力临床科研应用、促进医院现代化管理汇集了丰富且有价值的资源。
在政策与技术的双重驱动下,将信息技术与临床业务深度融合,深入推进医疗数据在临床科研中的应用,能够充分挖掘医疗数据价值,发挥医疗数据在辅助临床诊断、拓展科研思路、提高科研效率方面的作用,强化医院数据治理能力。
医疗大数据在临床科研中的应用场景
在传统的临床研究模式下,无论是提出科学问题,还是实验设计、数据采集、数据处理分析、结果验证,都是一项耗费大量人力、财力和时间的工作,严重制约临床科研成果的产出效率。
在大数据背景下,云计算、分布式存储、自然语言处理等大数据应用技术日趋成熟。以电子病历数据为主的医疗大数据规范应用,结合数据挖掘、智能化分析方法,为临床科研有效建立了基于真实世界数据和数据挖掘技术的科研思路和科研方法;以数据为重点赋能临床和管理决策,医疗大数据在临床科研中的应用场景不断丰富。
1.1探索疾病关联关系
多学科、多维度数据是患者健康信息的主要特点,将离散的数据进行整合与规范化,对大量、关联性的疾病数据进行分析整理,建立疾病、症状、诊断、用药、手术、检查、检验之间的相关关系,形成知识图谱,可以探索疾病的关联关系,进行诊疗效果比较、合并用药研究、疾病特征和患者分析,有利于加深对疾病的了解,拓展科研发现,辅助临床诊断。
1.2进行临床预测
医疗大数据的优势在于有大量的真实世界数据用于模型建立及临床预测。
1.3建立医疗质量监测评估
数据可满足横向可比及向纵深细化,通过对医院临床和运行数据的综合挖掘和分析,发现医疗质量问题的真相,准确定位原因和指导改进。
1.4助力专科疾病研究
搭建专科疾病数据库一直是科室、医院乃至国家层面的重要需求。在医疗大数据科研平台基础上,搭建专科疾病数据库,能够帮助专科疾病的科研设计、数据收集、既往成果查询、跨科室跨医院协作等科研流程的实现,使专科疾病相关的检查检验数据、随访数据、CRF表单等数据得到快速收集和高效利用。通过建立专科疾病数据库,大大节约了开展临床科研的人力成本,缩短了科研数据的获得周期,可以帮助医生确定最佳治疗方案。
医疗大数据在临床科研中应用的挑战
2.1数据结构化水平低
目前医院信息系统中临床数据存储分散、缺乏标准化、数据不完整、存在非结构化数据等问题造成临床研究者在科研实践中获取数据时存在种种困难。
2.2医疗大数据应用存在数据隐私挑战
医疗大数据涉及个人隐私信息众多,如不采取充分的隐私保护措施,将会对数据应用和治理带来诸多潜在风险,如数据的非法流通、信息丢失、造成患者歧视等。由于医疗大数据应用场景繁多,数据隐私的关键问题也不尽相同,数据隐私的挑战持续存在。
2.3数据应用能力薄弱
医疗大数据在临床科研中的应用能力薄弱,一方面是由于缺乏有效的数据分析工具,另一方面是由于缺乏相关数据分析人才。
2.4数据的深度挖掘不够
医疗大数据是临床科研的宝贵资源,其对于临床科研的价值,不仅仅是数据统计,更重要的是通过数据的筛选和挖掘,协助科研观点的产生、科研方法的设计、科研过程的实施和科研结果的验证,得出对实践更有指导意义的结论。
医院大数据在临床科研中的应用建议
临床科研能力是提高医院核心竞争力的重要环节,是推动医院学科建设和发展的关键。加强医院大数据在临床科研中的应用,应从信息平台的顶层设计、人才队伍建设、科研协作、数据使用机制建设等方面进行统筹规划。
3.1建立医疗大数据科研应用平台
医院临床数据中心建设重点是建设医疗大数据分析平台。医疗大数据科研应用平台的建立,为解决数据互联互通、数据结构化、数据检索、数据深度挖掘、开展单中心/多中心临床研究等问题提供了有效途径。
3.2建设医疗大数据应用分析人才队伍
医疗机构应以多种方式培养和吸引大数据、计算机、医学复合型人才,与高校、研究机构、企业加强人才培养和技术应用合作,扩大医疗机构数据应用人才队伍,弥补医生在数据统计等方面的能力不足问题,为临床科研提供技术支撑。
3.3开展联盟科研协作
开展以医疗大数据为基础的单中心/多中心的科研协作,为疾病的筛查、诊断、治疗提供证据支持,为科研服务提供全面、规范化的数据支持。此外,医疗大数据应用可满足获取多学科信息的需求,对支持专科规范化诊疗具有重要意义,在专病库建设、专科诊疗方面也具有良好的推广价值。